Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Journal of Advanced Biotechnology and Experimental Therapeutics ; 6(1):35-43, 2023.
Article in English | Scopus | ID: covidwho-2226075

ABSTRACT

SARS-CoV-2 stands for severe acute respiratory syndrome coronavirus 2. Matrix metalloproteinases-9 (MMP-9) performs a crucial physiological role. In addition to its roleICLEin the molecular basis of lung fibrosis, this enzyme may also play a part in the "cytokine storm," which may represent one of the potential scenarios during coronavirus infection. Tissue inhibitors of metalloproteinase (TIMPs) are well-known for their ability to regulate MMP activity during remodeling of the extracellular matrix. As cytokines, they are also thought of as signaling molecules that impact on a wide range of biological processes. This study aimed to investigate the link between each of MMP-9 and TIMP-1, and COVID19 disease. A total of 58 COVID-19 patients and 30 apparently healthy adults enrolled in this study. The ORF1ab, E and N genes of SARS-CoV-2 were detected using multiplex real-time PCR, while the ELISA technique was used to estimate the level of serum MMP-9, TIMP-1, and C-reactive protein (CRP). The study results demonstrated higher concentrations of MMP-9 in COVID-19 patients (2810 ± 1160 pg/ml) compared to controls (2110 ± 850 pg/ml), with non-significant differences (p=0.002). Unlike, TIMP-1, showed considerably higher levels in the patient's group (541.53 ± 201.42 pg/ml) than in controls (276.33 ± 67.26 pg/ml) with high significant differences (p ≤ 0.001). Considering this study, TIMP-1 in COVID patients most likely play an important role in inflammatory response. Its clinical utility as a biomarker may be insufficient, but it provides a useful data in the diagnosis of COVID‐19. © 2023, Bangladesh Society for Microbiology, Immunology and Advanced Biotechnology. All rights reserved.

2.
Bionatura ; 7(3), 2022.
Article in English | Scopus | ID: covidwho-2111329

ABSTRACT

A total of (90) blood samples were collected from male patients infected with Toxoplasmosis who recovered from COVID- 19 and attended Kamal Alsamiraai Hospital from 15 January to 15 September 2021. We measured anti-Toxoplasma antibodies (IgG and IgM) detected by ELISA, whereas Anti-COVID-19 antibodies (IgG and IgM) were estimated using Elisa and Afilias. The semen characteristics were also studied among fertile, healthy individuals (control group) and sub-fertile patients. Results showed that the mean sperm count was high among the control group (40.5±1.3x 106/ml) compared with that of the sub-fertile patients (10.3±1.75 and 8.8±1.9 x 106/ml for oligozoospermia, and oligoasthenozoospermia respectively), and it was the highest (44.7±1.4 x 106/ml) among asthenozoospermia patients. Compared to the control group, there were highly significant differences between anti-Toxoplasma IgG antibodies and anti-COVID-19 IgG antibodies (P<0.001). The mean level of Toxoplasma IgM was (11.74±8.90) and for control was (0.05±0.10), while the mean level of COVID-19 IgM was (1.91±1.06) and for control was (0.04±0.03) in sub-fertile patients. The mutation occurred in IL-IB gene A to G transgene at site 4514 of the IL-IB gene (sample code, 6383) and in the case of an invalid sample code, 2409 and 5097. In the alanine codon, the GCA codon has mutated into GCG. Also, G to A transgene occurred at site 4514 of the IL-IB gene. (sample code, 6750) In the case of an invalid sample code, it happened in 010081 and 009593. In the alanine codon, the ATG codon has mutated into ATA. © 2022 by the authors.

SELECTION OF CITATIONS
SEARCH DETAIL